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Abstract. Object detection methods based on sliding windows has long
been considered a binary classification problem, but this formulation ig-
nores order of examples. Deformable part models, which achieves great
success in object detection, have the same problem. This paper aims to
give better order to detections given by deformable part models. We use
a bagged LambdaMART to model both pair-wise and list-wise relation-
ships between detections. Experiments show our ranking models not only
significantly improve detection rates compared to basic deformable part
model detectors, but also outperform classification methods with same
features. .

1 Introduction

Detection of objects in natural images has always been a difficult problem in
computer vision, due to the complexity of backgrounds and the large variances
of objects in the same category. Data-driven methods in recent years[12, 18] have
achieved reasonable results. In these methods, object detection is formulated into
a binary classification problem: to distinguish the object patches and non-object
ones from a set of candidates. The candidates can be generated using either
sliding windows[12] or objectness based methods[2, 9].

Deformable Part Models(DPM) have achieved great success in object de-
tection. Though DPMs generate solid sets of candidates with hierarchical tem-
plates[12] to model the deformation inside categories, they also suffer from the
shortcoming of binary classification formulation. Our experiments show that
with an enlarged set of detections and the correct order of the detections, the
performance of DPMs may be significantly prompted. This observation reveals
the role of order in object detection, and make it a natural way that developing
a learning to rank framework to improve DPMs.

With ranking perspective on object detection, we can remodel object detec-
tion as object ranking, which aims to recover the ground truth order given a set
of candidate detections. The set, can contain all possible windows in a spatial
pyramid, or the output of previous detection system.

When comparing object ranking to classical object detection methods, we
find that the classical methods fail to capture the relationships between detec-
tions. The relationships, contains both pair-wise and list-wise information, plays
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Fig. 1. In the image on the left-hand side, detection a and b are both true detections,
but a is definitely a better detection than b; In the image on the right-hand side, c and
d are both false detections whose overlap ratios with ground truth objects are below
0.5, but still we can tell d is better than c.

a central role in ranking. As Figure 1 shows, A ranking model focuses on ”Why
is a detection better than another” rather than ”Why is a detection true”.

We have a discussion on background works in Section 2. Section 3.1 makes a
review of LambdaMART. Section 3.2 discusses why object ranking is useful. Sec-
tion 3.3 describes our ranking model based on ensemble of decision trees, which
uses bagged[5] LambdaMART[19], with a training procedure with increasing
dataset. Experiments in section 4 discuss the features we use, the potential of
DPM, show the comparison between ranking and classification. We then make
analysis on the errors before and after ranking, and discuss the impact factors
of our ranking model.

2 Related Work

Research on generic object detection is originating from person detection[10].
From then on sliding-window methods with HOG pyramids have been a main
stream on object detection. For every category of objects, sliding-window build
a set of templates to represent all its poses. During training, cropped objects and
backgrounds are extracted to train the template. During detecting, a matching
score is computed at every position in the feature space, then the position with
scores above a threshold is considered to be an object position[10].

Deformable part models[12] have greatly pushed the research on object de-
tection. As a variation of sliding windows, DPMs establish a set of hierarchical
templates for every category of objects. Each template is organized into a root
and its parts. Not only the appearance(vision features) of roots and parts, but
also the parts’ relative positions(structural features) to the root are taken into
consider, so that DPMs can tolerate a certain degree of deformation.

Our work is basically based on DPM. But different from the way using strong
supervised information[4, 3], we aim to improve DPM by using extra image in-
formation beyond HOG, which is relatively simple.
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Many excellent works have shown that object detection can benefit from ob-
jectness models[2, 18, 9]. Objectness models aim to provide a small set of detec-
tion candidates with high recall. Then classifiers are applied on the candidates.
Our work is similar to this approach in the way that we both use two-stage
modeling, but we use deformable part models rather than objectness models to
generate more reliable, and smaller sets of candidates, also we use ranking rather
than classification as the post procedure.

Gradient Boosted Decision Trees(GBDT) based methods have achieved great
success in learning to rank problems[6]. They use a pair-wise loss from ranknet
models[7]. GBDTs are then extended to LambdaMART[19] by introducing list-
wise information[8]. We use a bagged LambdaMART to rank detections, this
method is similar with [13], but differs in the way how bagging samples are
generated, our generating scheme is based on pairs rather than examples, and is
a more natural way in the task of object detection.

There are many types of useful image features for object detection, among
which Histograms of gradient(HOG) features[10] have long been a primal one,
Local Binary Patterns(LBP)[1] are proved to be a good supplement for HOG,
Color SIFT has also been a standard feature using in methods based on selective
search[18], local contrast information and saliency are also useful[2].

In recent years features from deep convolutional neural networks(CNN)[15]
achieved very high performance[14]. Features learned by well-structured deep
CNNs are good descriptors for images, and are powerful tools for object detec-
tion.

3 Ranking Model for Object Detection

3.1 Why Ranking?

Classical learning to rank systems focus on selecting relevant items from a set
of candidates. Object detection is similar to these models, if we interpret the
searching space of object detection as a set of candidates. Following the way of
Pascal VOC evaluation[11], the set of candidates are all positions of all images
in a dataset. The aim of object detection is then selecting candidates that have
more overlap ratios with ground truth objects.

In information retrieval systems, when modeling the relationship of some
samples {xi}ni=1 and their corresponding labels {yi}ni=1, there are three types of
information:

– item-wise information, direct relationships between every xi and yi.
– pair-wise information, relationships between a paired (xi, xj).
– list-wise information, information retrieval metrics of a list x1, x2, . . . , xn,

such as mean average precision(MAP).

On the other hand, the standard evaluation metric for object detection is
MAP, so it is natural that taking MAP of detections into account during training.
While it is quite difficult for classification which focuses on item-wise labels,
adding list-wise information to a ranking model is straight-forward[8].
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The key difficulty for applying ranking models on object detection is its large
space of candidates. All rectangles in images are candidates to rank. Sliding win-
dow methods largely reduce the number of candidates by making the constraint
that all candidates should be in certain sizes[10], while in recent years there are
several useful technologies directly aiming at shrinking the space of candidates[2,
9].

3.2 LambdaMART

Cross Entropy Loss Suppose that we have a list of detections, labeled with
their overlap ratios with ground truth objects. We first generate a set of pairs
based on the list, let the set be J , each pair (i, j) in the set J means that
detection xi has a higher overlap ratio than xj with some ground truth objects.
We then define a cross entropy loss function on pairs in J .

To begin the definition, we define a simple empirical distribution on every
pair (i, j) in J :

P̄ij ≡
{

1, (i, j) ∈ J
0, (j, i) ∈ J (1)

The empirical probability is a statistical measure of the pair-wise information
in training datasets. During the train stage of our model, the score function is
applied on each detection, and the score outputted would also generate a model
distribution. We define it in a form of sigmoid function:

Pij ≡
1

1 + e−σ(fi−fj)
(2)

For simplicity, we use fi to denote a score function for sample xi.
The two distributions should be as close as possible. We use cross entropy to

measure the divergence of them:

Cij = −P̄ij log(Pij)− (1− P̄ij)log(1− Pij) (3)

Combining Eq.(1) ,(2) and (3), we got:

Cij = log(1 + e−σ(fi−fj)) (4)

MART A MART model is an ensemble of regression decision trees, the score
for a feature x is defined as:

fm(x) =

m∑
k=1

ηktk(x) (5)

where tk(x) is the score of kth regression decision tree, η is the learning rate.
Suppose that m− 1 trees are trained, and the mth tree is now to be trained.

Note that in MART model, a new regression tree tries to capture the gradient
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of total cost, that is, let the gradient for a single example xi be λmi , the mth
tree trained to fit the dataset {(xi, λmi )}ki=1. We have:

λmi ≡
∑

j:(i,j)∈Jor(j,i)∈J

∂Cm−1ij

∂fm−1i

(6)

Recall the derivative of Cij , which is defined in Eq.4, has following feature:

∂Cij
∂fi

=
−σ

1 + e−σ(fi−fj)
= −∂Cij

∂fj
(7)

let
∂Cm−1

ij

∂fm−1
i

be λmij , we can re-write λmi as:

λmi =
∑

j:(i,j)∈J

λmij −
∑

j:(j,i)∈J

λmij (8)

LamdbaMART While the above formulation well models pair-wise informa-
tion, weights of λs are introduced to capture list-wise information.

λij =
−σ

1 + e−σ(fi−fj)
‖∆MAPij‖ (9)

where ∆MAPij is the change of mean average precision if positions of xi and
xj are exchanged.

3.3 Bagged LambdaMART with an Increasing Training Set

We have discussed in Section 3.1 why object detection is more a ranking problem
instead of classification, but there are still significant differences between object
detection and classical ranking problems.

The first difference is that the list of candidates in object detection is much
larger. In classical ranking tasks, candidates are divided into different groups,
because only candidates in the same group have relationships, comparison be-
tween groups are meaningless. While in object detection, a candidate is compa-
rable with all other candidates in the dataset, not only from the same image, so
an ideal list for object detection is a list contains all candidates detected on all
images in the dataset.

Suppose there are m images in the dataset, and we generate n detection
candidates per image, then the ranking list has length m∗n, and when applying
LambdaMART in which pairs are needed to be generated, that is, O((m ∗ n)2)
pairs(if the relationships between candidates are not sparse, they are usually
not), computing the loss of all pairs are both time consuming and memory
consuming.

The second difference is that there are too many low-ranking candidates rela-
tive to high-ranking ones. This is a main difficulty for nearly all object detection
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Fig. 2. The training procedure

systems[12, 20, 18]. DPM results have largely reduced the difficulty by providing
a credible candidate sets, but we still have a ratio of 25 : 1 between high-ranking
detections with low-ranking ones.

Based on above observations, we use an ensemble of ranking models with
increasing training set for detection. The framework of training is shown in Fig
2.

Increasing Training Set We generate the training set in an increasing way.
The training set is initialized with good candidates whose overlap ratios are
above a threshold, others are stored in a set of open detections, trained models
are applied on this set and detections with high scores are added into the training
set and removed from the set of open detections. Operating like this iteratively,
we are supposed to get final model after a certain number of iterations.

Increasing training datasets, which are widely used in object detection sys-
tems, aim to solve the unbalance problem of true and false examples. Our im-
plementation is similar to previous methods based on classification, but the
motivation is quite different.

It is notable that in the ranking perspective on object detection, there is
no unbalance problem for training data, as we focus mainly on pair-wise and
list-wise information, rather than item-wise labels. So it is possible to include
all examples in training set, and train a model in a single round, our iterative
setting is aiming to reduce the difficulty in computing.

Bagging At each iteration, once training set is prepared, the training set forms
a single list for ranking. To reduce computational complexity, we use bagging
methods to randomly split the whole set into smaller subsets. A splittings is a
bagging[5] set of samples, in the way that splitting on examples are equivalent
to sampling on pairs.

To ensure pairs are sampled uniformly, suppose we have K subsets, and the
probability of sample xi be grouped into subset k(1 ≤ k ≤ K) is pki , then the

probability of pair (i, j) be sampled in this splitting is

K∑
k=1

pki ·p
k
i

K . We can then
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Fig. 3. Ensemble of decision trees as a matrix

make probability a constraint by simply setting pki = 1
K . That means if each

example is assigned into subsets uniformly, then the pairs are sampled uniformly.
We then train a LambdaMART model for every splitting, then the ensemble

of LambdaMART models are obtained as the final model at this iteration.
Bagged LambdaMART can be interpreted as a matrix of decision trees, as

Figure 3 shows, trees in the model are ensembled in both gradient boosted
scheme, and bagging scheme.

4 Experiments

4.1 Deep features

We use Caffe[16] to extract deep features. The network is the pretrained model
in Caffe. The architecture of the neural network, is defined in [17]. For each
detection windows, the image patch bounded by it are feed into the network,
and the output of penultimate layer are taken as features. These features have
been proved to be powerful in object-based image recognition problems[14], and
it would be more powerful after fine-tuning on Pascal VOC datasets, but as our
focusing are the ranking procedure, we just use the original features.

4.2 Potential of DPM

Deformable Part Models, which learn certain number of templates for objects,
suffer from the large variance of objects in a category, but we argue that by
enlarging the detection set on each image, and giving them the correct order,
deformable part models can achieve much better performance.

We enlarge the detection set by selecting k-best detections per image, instead
of using a static threshold. Fig.4 shows that under k-best scheme, recall is an
increasing function on k.

To illustrate the importance of correct order, we evaluate detections in both
orders: the order given by DPM detectors, and the order given by their overlap
ratios.
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Fig. 4. recalls are growing by increasing k on both trainval and test dataset of Pascal
VOC 2007, but the growth would be very slow when k is large.

Table 1 shows the results of comparison on Pascal VOC2007 datasets[11],
which is also the potential of DPM.

Table 1. DPM order is the order according to DPM scores, and GT order is the order
according to overlap ratios with ground truth objects. When detections are given, DPM
results in GT order are the upper bound of DPM.

plane bike bird boat bottle bus car cat chair cow

DPM order 0.310 0.597 0.040 0.121 0.235 0.506 0.546 0.171 0.177 0.228
GT order 0.748 0.875 0.700 0.609 0.602 0.879 0.710 0.912 0.755 0.698

table dog horse mbike person plant sheep sofa train tv AVG

DPM order 0.221 0.046 0.583 0.479 0.418 0.085 0.188 0.359 0.454 0.408 0.309
GT order 0.898 0.893 0.876 0.845 0.691 0.662 0.641 0.960 0.868 0.785 0.780

4.3 Model Comparison on Pascal VOC Benchmarks

While correct order can significantly improve the performance of DPM, how
to recover the correct order is a main challenging. As discussed above, ranking
is a straight-forward way. We also implement a binary classification re-scoring
procedure based on SVM for comparison.

Table. 4.3 shows that our ranking model outperforms classification model
based on SVM. The results proved our guess: by modeling more information,
ranking models are more powerful than classification models in object detection.

In table 4.3 we make an extra comparison between our results and [14],
which uses the same features, much larger candidate sets(1000-2000 detections
per image, giving higher recall than DPM), and svm classifiers. With a smaller
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Fig. 5. Top detections of car, dog, tvmonitor and horse, which are considered negative
by original DPM, but judged positive by our ranking model.

set of candidates, our models plays better on 9 categories, and average rate on
all categories are very close(only a difference of 0.3

The implementation in [14] uses training and testing set of detections gen-
erated by selective search, which contains 1000-2000 detections per image. We
obtain close performance to them with a smaller set of candidates.

Table 2. DPM is the original results, DPM+svm is the results, DPM+rank is results
form our ranking model, DeepF is the result reported in [14].

plane bike bird boat bottle bus car cat chair cow

DPM 0.310 0.597 0.040 0.121 0.235 0.506 0.546 0.171 0.177 0.228
DPM+svm 0.421 0.555 0.341 0.194 0.261 0.519 0.545 0.428 0.327 0.291
DeepF 0.531 0.589 0.354 0.296 0.223 0.5 0.577 0.524 0.191 0.435
DPM+rank 0.467 0.668 0.259 0.194 0.307 0.594 0.570 0.392 0.291 0.365

table dog horse mbike person plant sheep sofa train tv AVG

DPM 0.221 0.046 0.583 0.479 0.418 0.085 0.188 0.359 0.454 0.408 0.309
DPM+svm 0.391 0.337 0.501 0.591 0.417 0.192 0.313 0.329 0.451 0.477 0.394
DeepF 0.408 0.436 0.476 0.54 0.391 0.23 0.423 0.336 0.514 0.552 0.426
DPM+rank 0.335 0.240 0.651 0.629 0.445 0.167 0.309 0.449 0.586 0.541 0.423

Fig.5 shows top detections from negatives of DPM. The ranking model are
more strong at detecting truncated objects or objects in complex backgrounds.

4.4 Analysis of Ranking Model

Following [18], we initialize the training set with detections whose overlap ratios
are above 0.2. At each iteration, 5000 detections with highest score in the set of
open detections are added into the training set.
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Fig. 6. We use two categories to select a best number of iterations. We train ranking
models on trainval dataset of Pascal VOC 2007, and test them on the a subset of the
test dataset.

Fig.6 shows detection rates at different iterations. The first three rounds of
training is useful, but training after 3 rounds makes little contribution. At the
beginning iterations of training, MAP grows significantly, but after 3 rounds,
there is no significant promotion when increasing the number of iterations.

4.5 Analysis of Errors

Under the standard evaluation metric of MAP, true detections are the detections
which have overlap ratios below 0.5, and false detections just the opposite. When
focusing on false detections, it is a natural idea that these errors are caused by
different reasons, so that a fine-grained analysis is reasonable.

We divide detection errors into 3 types: location errors; confusion with other
categories; background errors. We argue that only background errors are real
errors. Location errors at least provides the correct information about the exis-
tence of objects, while confusion errors may suggest visual similarities of different
categories.

We define location errors as the false detections with relatively high overlap
ratios(above 0.2). As Fig.7 shows, giving the same number of total errors, the
proportion of location errors after ranking are much higher than that before
ranking.

The result means that false detections with higher overlap ratios are given
higher ranking, and the our ranking model has a strong ability of distinguishing
a not so bad example from totally bad ones. Then, by introducing pair-wise and
list-wise information, the ranking model meets the expectation that learning
”why a detection is better than another”.

Another important type of errors is confusion with other categories. Fig.8
shows the confusion matrices on top 100 errors before and after ranking.

Overall distribution of confusions before and after ranking are similar. There
are some common pairs in both matrices, like bicycle and motorbike; car and
bus; horse and cow; train and bus. These pairs are all similar categories in vi-
sion, it is difficult to distinguish even by human visually, human may distinguish
them by other information.
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Fig. 7. We select 4 representative classes: bird, on which the performance of DPM
is very poor; horse, on which the performance of DPM is very good; tvmonitor and
bicycle are artificial objects with middle level performance.

Besides similar pairs discussed above, it is interesting that there are two
significant confusion in the matrix before ranking: recognizing bird as aeroplane,
and recognizing person as chair. They are both dismissed in the matrix after
ranking. It shows that when HoG features focus on the shape and structure of
images, deep features are more complex and more powerful to distinguish images
by appearance.

5 Conclusion and Future Work

Our whole work in this paper is motivated by the ignorance of order informa-
tion by classical object detection methods. Under the guidance of this idea, we
propose a bagged LambdaMART for object detection. We evaluate the models
on k-best results generated by deformable part models, with deep features from
convolutional neural network. Experiments show an improvement by ranking not
only compared to original DPM, but also svm-based re-scoring method applied
on DPM. Our model also achieves close result with state of the art methods
which use the same feature. We also implement several fine-grained evaluations
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Fig. 8. Confusion matrices before and after ranking. These matrices are not standard
confusion matrices, only errors are shown in them so that the diagonals are all zero.
Each row in the matrices represents distribution of mis-recognition errors for a specific
detector.

on detection errors, which also provides solid evidence for the role of ranking in
object detection.

But it is also notable that the combination of ranking model and deep features
does not explore total potential of DPM, there is still a long way to go to recover
the ground truth order.

Our object ranking framework can be used as a post-processing stage of any
object candidates generating system. Although the k-best results of DPM are
small and reliable, there are many objectness based methods which generate
results with much higher recall. It would be also useful to run the ranking model
on that methods.
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